Universal formulas for percolation thresholds.

نویسندگان

  • Galam
  • Mauger
چکیده

A power law is postulated for both site and bond percolation thresholds. The formula writes pc = p0[(d − 1)(q − 1)]d , where d is the space dimension and q the coordination number. All thresholds up to d → ∞ are found to belong to only three universality classes. For first two classes b = 0 for site dilution while b = a for bond dilution. The last one associated to high dimensions is characterized by b = 2a−1 for both sites and bonds. Classes are defined by a set of value for {p0; a}. Deviations from available numerical estimates at d ≤ 7 are within ±0.008 and ±0.0004 for high dimensional hypercubic expansions at d ≥ 8. The formula is found to be also valid for Ising critical temperatures. Permanent adress: Groupe de Physique des Solides, T23, Universités Paris 7 et 6, 2 Place Jussieu, 75751 Paris Cedex 05 Laboratoire associé au CNRS (URA n 800) et à l’Université P. et M. Curie Paris 6

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Desirable Properties of Universal Formulas for Percolation Thresholds

Percolation models are infinite random graph models which exhibit phase transition behavior at critical values called percolation thresholds. Several so-called ”universal formulas” that predict approximate values for percolation thresholds of all periodic graphs have been proposed in the physics and engineering literature. The existing universal formulas have been found to have substantial erro...

متن کامل

Reply to the comment “ Universal Formulae for Percolation Thresholds ”

In a recent paper, we have reported a universal power law for both site and bond percolation thresholds for any lattice of cubic symmetry. Extension to anisotropic lattices is discussed. ∗Laboratoire associé au CNRS (URA n◦ 800) et à l’Université P. et M. Curie Paris 6

متن کامل

Site percolation thresholds and universal formulas for the Archimedean lattices

The site percolation thresholds pc are determined to high precision for eight Archimedean lattices, by the hull-walk gradient-percolation simulation technique, with the results pc = 0.697 043, honeycomb or (6 ), 0.807 904 (3, 12), 0.747 806 (4, 6, 12), 0.729 724 (4, 8), 0.579 498 (3, 6), 0.621 819 (3, 4, 6, 4), 0.550 213 (3, 4), and 0.550 806 (3, 4, 3, 4), and errors of about ±2 × 10. (The rema...

متن کامل

Ja n 20 05 Possible crossover of a non universal quantity at the upper critical dimension

We report on a possible crossover of a non universal quantity at the upper critical dimensionality in the field of percolation. Plotting recent estimates for site percolation thresholds of hypercubes in dimension 6 ≤ d ≤ 13 against corresponding predictions from the GM formula pc = p0[(d − 1)(q − 1)] d for percolation thresholds, a significant departure of pc is observed for d ≥ 6. This result ...

متن کامل

A New Universality for Random Sequential Deposition of Needles

Percolation and jamming phenomena are investigated for random sequential deposition of rectangular needles on d = 2 square lattices. Associated thresholds p c and p jam c are determined for various needle sizes. Their ratios p c /p jam c are found to be a constant 0.62±0.01 for all sizes. In addition the ratio of jamming thresholds for respectively square blocks and needles is also found to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 1996